Dieser Sprachassistent hört nicht nur auf das eigentliche Triggerwort „Amazon“, sondern springt zum Beispiel auch an, wenn die Wörter „Am Sonntag“ gesprochen werden. Foto: RUB/Katja Marquard

Bei einigen Wörtern springen Sprachassistenten ungewollt vom Nutzer an. Sie schneiden sie eine kurze Sequenz des Gesagten mit und übermitteln die Daten an den Hersteller, teilweise ohne dass die Nutzerinnen und Nutzer das bemerken. Das haben Forscherinnen und Forscher der Ruhr-Universität Bochum (RUB) und des Bochumer Max-Planck-Instituts (MPI) für Cybersicherheit und Schutz der Privatsphäre  herausgefunden.

Sie erstellten eine Liste von englischen, deutschen und chinesischen Begriffen, die von verschiedenen Sprachassistenten wiederholt als Aufforderung zum Zuhören fehlinterpretiert wurden. Die aufgenommenen Audioschnipsel werden dann von Angestellten der Konzerne transkribiert und überprüft. So können Fetzen von sehr privaten Unterhaltungen bei Firmen landen. Beispiele aus der Arbeit der Forscherinnen und Forscher sind unter unacceptable-privacy.github.io zu finden.

Alle großen Hersteller im Test

Die IT-Expertinnen und -Experten testeten die Sprachassistenten von Amazon, Apple, Google, Microsoft und Deutscher Telekom sowie drei chinesische Modelle von Xiaomi, Baidu und Tencent. Sie spielten ihnen stundenlang deutsches, englisches und chinesisches Audiomaterial vor, unter anderem einige Staffeln aus den Serien „Game of Thrones“, „Modern Family“ und „Tatort“ sowie Nachrichtensendungen. Auch professionelle Audio-Datensätze, die zum Training von Sprachassistenten verwendet werden, waren dabei.

Alle Sprachassistenten waren mit einer Diode versehen, die registrierte, wann die Aktivitätsanzeige des Sprachassistenten aufleuchtete, das Gerät also sichtbar in den aktiven Modus schaltete und somit ein Trigger auftrat. Außerdem registrierte das Setup, wann ein Sprachassistent Daten nach außen sendete. Immer wenn eines der Geräte in den aktiven Modus schaltete, protokollierten die Forscher, bei welcher Audiosequenz das der Fall war. Manuell werteten sie später aus, welche Begriffe den Sprachassistenten getriggert hatten.

Fehltrigger identifiziert und selbst erzeugt

Aus diesen Daten erstellte das Team eine erste Liste von über 1.000 Sequenzen, die Sprachassistenten fälschlicherweise triggern. Abhängig von der Betonung hört Alexa im Englischen beispielsweise auf die Wörter „unacceptable“ und „election“ oder Google auf „OK, cool“. Im Deutschen lässt sich Amazon beispielsweise durch „Am Sonntag“ und Siri durch den Begriff „Daiquiri“ täuschen.

Um zu verstehen, was diese Begriffe zu Fehltriggern macht, zerlegten die Forscherinnen und Forscher die Wörter in ihre kleinstmöglichen Klangeinheiten und identifizierten die Einheiten, die häufig von den Sprachassistenten verwechselt wurden. Basierend auf diesen Erkenntnissen erzeugten sie neue Triggerwörter und zeigten, dass diese die Sprachassistenten ebenfalls anspringen lassen. „Die Geräte sind mit Absicht etwas liberal programmiert, weil sie ihre Menschen verstehen können sollen. Sie springen also eher einmal zu viel als zu wenig an“, resümiert Prof. Dorothea Kolossa vom Horst-Görtz-Institut für IT-Sicherheit (HGI) der RUB.

Audioschnipsel werden in der Cloud analysiert

Die Wissenschaftler untersuchten genauer, wie die Hersteller Fehltrigger auswerten. Typisch ist ein zweistufiger Prozess. Zunächst analysiert das Gerät lokal, ob in der wahrgenommenen Sprache ein Triggerwort enthalten ist. Vermutet das Gerät, das Aktivierungswort gehört zu haben, fängt es an, dass derzeitige Gespräch für eine weitere Analyse mit mehr Rechenpower in die Cloud des Herstellers hochzuladen. Identifiziert die Cloud-Analyse den Begriff als Fehltrigger, bleibt der Sprachassistent stumm, nur seine Kontrollleuchte leuchtet kurz auf. In diesem Fall können bereits mehrere Sekunden Audiomitschnitt bei den Herstellern landen, wo sie von Menschen transkribiert werden, um solch einen Fehltrigger in der Zukunft zu vermeiden.

Vorrang für Datenschutz oder technischer Optimierung?

„Aus Privacy-Sicht ist das natürlich bedenklich, weil teils sehr private Unterhaltungen bei Fremden landen können“, sagt Prof. Thorsten Holz vom HGI-Lehrstuhl für Systemsicherheit. „Aus Engineering-Sicht ist das Vorgehen hingegen nachvollziehbar, denn die Systeme können nur mithilfe solcher Daten verbessert werden. Die Hersteller müssen einen Spagat zwischen Datenschutz und technischer Optimierung schaffen.“